Positron emission tomography (PET) is a nuclear medicine imaging technology which allows for four-dimensional, quantitative determination of the distribution of labeled biological compounds within the human body. PET is becoming an increasingly important tool for the measurement of physiological, biochemical and pharmacological functions at the molecular level in healthy and pathological conditions. This review will focus on Flouride-18, one of the common isotopes used for PET imaging, which has a half life of 109.8 minutes. This isotope can be produced with an efficient yield in a cyclotron as a nucleophile or as an electrophile. Flouride-18 can be thereafter introduced into small molecules or biomolecules using various chemical synthetic routes, to give the desired imaging agent.