Some reactions of an eta3-tetracyanobutadienyl-ruthenium complex

Dalton Trans. 2010 Apr 21;39(15):3759-70. doi: 10.1039/b921324d. Epub 2010 Mar 11.

Abstract

In the eta(3)-butadienyl complex Ru{eta(3)-C(CN)(2)CPhC=C(CN)(2)}(PPh(3))Cp 1, which is formed from Ru(C[triple bond]CPh)(PPh(3))(2)Cp and tcne, a CN group reacts with MeO(-) to give the methoxy-amide Ru{NH=C(OMe)C(CN)=CCPh=C(CN)(2)}(PPh(3))Cp 2, in which the NH has displaced the C=C from the Ru centre with formation of a RuC(3)N ring. "Click addition" of azide to a CN group in 1 gives the oligomeric tetrazolato complex Ru{N(3)N[Na(OEt(2))]=CC(CN)=CCPh=C(CN)(2)}(PPh(3))Cp 3, also containing a RuC(3)N ring. Salt-elimination reactions of 3 with MeOTf, FeCl(dppe)Cp, RuCl(dppe)Cp* and trans-PtCl(2){P(tol)(3)}(2) result in selective substitution at one nitrogen atom of the RuC(3)N ring. Geometries of 1 and the anion in 3 were computed by DFT methods. Preferences for CN groups attacked in the nucleophilic and cycloaddition reactions of 1 are supported by NBO calculations. Alkylation of 1 in reactions with 1,2-dimethoxyethane gave two isomers of Ru{N(3)[CH(CH(2)OMe)(OMe)]N=CC(CN)=CCPh=C(CN)(2)}(PPh(3))Cp 8 and 9, differing in the sites of attachment of the alkyl group, likely by radical processes. The molecular structures of eight complexes are reported, including a re-determination of 1. Computed NMR chemical shifts are used to reassign the butadienyl carbon resonances in the (13)C NMR spectrum of 1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Coordination Complexes / chemical synthesis
  • Coordination Complexes / chemistry*
  • Crystallography, X-Ray
  • Magnetic Resonance Spectroscopy
  • Molecular Conformation
  • Organometallic Compounds / chemical synthesis
  • Organometallic Compounds / chemistry*
  • Ruthenium / chemistry*
  • Spectrophotometry, Infrared
  • Thermodynamics

Substances

  • Coordination Complexes
  • Organometallic Compounds
  • Ruthenium