Defective DNA replication impairs mitochondrial biogenesis in human failing hearts

Circ Res. 2010 May 14;106(9):1541-8. doi: 10.1161/CIRCRESAHA.109.212753. Epub 2010 Mar 25.

Abstract

Rationale: Mitochondrial dysfunction plays a pivotal role in the development of heart failure. Animal studies suggest that impaired mitochondrial biogenesis attributable to downregulation of the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1 transcriptional pathway is integral of mitochondrial dysfunction in heart failure.

Objective: The study sought to define mechanisms underlying the impaired mitochondrial biogenesis and function in human heart failure.

Methods and results: We collected left ventricular tissue from end-stage heart failure patients and from nonfailing hearts (n=23, and 19, respectively). The mitochondrial DNA (mtDNA) content was decreased by >40% in the failing hearts, after normalization for a moderate decrease in citrate synthase activity (P<0.05). This was accompanied by reductions in mtDNA-encoded proteins (by 25% to 80%) at both mRNA and protein level (P<0.05). The mRNA levels of PGC-1alpha/beta and PRC (PGC-1-related coactivator) were unchanged, whereas PGC-1alpha protein increased by 58% in the failing hearts. Among the PGC-1 coactivating targets, the expression of estrogen-related receptor alpha and its downstream genes decreased by up to 50% (P<0.05), whereas peroxisome proliferator-activated receptor alpha and its downstream gene expression were unchanged in the failing hearts. The formation of D-loop in the mtDNA was normal but D-loop extension, which dictates the replication process of mtDNA, was decreased by 75% in the failing hearts. Furthermore, DNA oxidative damage was increased by 50% in the failing hearts.

Conclusions: Mitochondrial biogenesis is severely impaired as evidenced by reduced mtDNA replication and depletion of mtDNA in the human failing heart. These defects are independent of the downregulation of the PGC-1 expression suggesting novel mechanisms for mitochondrial dysfunction in heart failure.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Aged
  • DNA Replication*
  • DNA, Mitochondrial / biosynthesis*
  • DNA, Mitochondrial / genetics
  • Down-Regulation
  • Female
  • Heart Failure / genetics*
  • Heart Failure / pathology*
  • Heat-Shock Proteins / genetics
  • Heat-Shock Proteins / metabolism
  • Humans
  • Male
  • Middle Aged
  • Mitochondria / genetics*
  • Mitochondria / pathology*
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Transcription Factors / genetics
  • Transcription Factors / metabolism
  • Young Adult

Substances

  • DNA, Mitochondrial
  • Heat-Shock Proteins
  • PPARGC1A protein, human
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Transcription Factors