The main interface of the 2 subunits of platelet integrin alphaIIbbeta3 comprises the beta-propeller domain of alphaIIb and the betaA domain of beta3. In the center of the beta-propeller, several aromatic residues interact by cation-pi and hydrophobic bonds with Arg261 of betaA. In this study, we substituted alphaIIb-Trp110 or beta3-Arg261 by residues abundant in other alpha or beta subunits at corresponding locations and expressed them in baby hamster kidney cells along with normal beta3 or alphaIIb, respectively. These mutant cells displayed normal surface expression and fibrinogen binding but grossly impaired outside-in signaling-related functions: adhesion to immobilized fibrinogen, cell spreading, focal adhesion kinase phosphorylation, clot retraction, and reduced alphaIIbbeta3 stability in EDTA (ethylenediaminetetraacetic acid). Expression of mutants with substitutions of Arg261 in beta3 by alanine or lysine with normal alphav yielded normal surface expression of alphavbeta3 and soluble fibrinogen binding as well as normal outside-in signaling-related functions, contrasting findings for alphaIIbbeta3. Structural analysis of alphaIIbbeta3 and alphavbeta3 revealed that alphavbeta3 has several strong interactions between alphav and beta3 subunits that are missing in alphaIIbbeta3. Together, these findings indicate that the interaction between Trp110 of alphaIIb and Arg261 of beta3 is critical for alphaIIbbeta3 integrity and outside-in signaling-related functions.