In this paper, the catalytic efficacy of peroxidase and manganese oxide, both commonly present in soil, to catalyze the formation of pyrogallol-phosphatase complexes was compared. The influence of several factors (e.g., the concentration of pyrogallol, the amount of catalysts, the nature of manganese oxide, birnessite, or pyrolusite, the incubation time, and the pH) on the transformation of pyrogallol and the characteristics and properties of the pyrogallol-phosphatase interaction products were investigated. The pyrogallol transformation mediated by both catalysts was very fast and increased by increasing the catalyst concentration. The nature of the catalyst also influenced the size and the molecular mass of the formed complexes. When polymerization of pyrogallol occurred with high intensity, a loss of phosphatase activity occurred, and it strongly depended on the pH at which the process was carried out and the catalyst. In particular, with peroxidase, the phosphatase activity was much lower in either suspensions or supernatants and not measurable in the insoluble complexes as compared to that measured in the presence of manganese oxides.