Clonorchiasis is an infection associated with bile duct malignancy and subsequent development of cholangiocarcinoma. This disease is mainly caused by Clonorchis sinensis worms and their excretory-secretory products (ESP). However, the precise molecular mechanisms of carcinogenesis remain to be determined. Previously, we established differential gene expression profiles from microarrays containing 23,920 human genes of known function in a human cholangiocarcinoma cell line, HuCCT1, treated with ESP. Among the upregulated genes, we focused on minichromosome maintenance protein 7 (Mcm7), which is implicated in various cancer types, and analyzed transcriptional regulation mediated by ESP to further elucidate its role in cholangiocarcinoma development. Global histone acetylation levels were increased in ESP-treated cells, along with histone acetyltransferase (HAT) protein expression. Detailed promoter analysis using reporter and chromatin immunoprecipitation assays revealed that transcriptional activation of Mcm7 is mediated by HAT recruitment to the promoter region upon C. sinensis ESP treatment. These findings contribute to clarification of the intrinsic mechanism underlying the cellular carcinogenesis process stimulated by Mcm7 in C. sinensis-treated host cells.
2010 Elsevier B.V. All rights reserved.