In spite of the optimisation of cryopreservation protocols, post-thawing trauma to mammalian gametes cannot be completely avoided. Based on recent literature, cellular cryodamage in reproductive cells has been extensively characterised in terms of changes in the cell structure, whereas biochemical alterations have been poorly investigated. The present paper reviews the current knowledge about the involvement of oxidative stress in frozen-thawed cells by considering the most relevant studies in sperm and oocytes. Recognising that spermatozoa are highly susceptible to oxidative damage induced by cryopreservation, the need for further research is highlighted in order to understand whether changes in the redox state have a role in the reduced developmental potential of cryopreserved human reproductive cells.