During skeletal muscle excitation-contraction (EC) coupling, membrane depolarizations activate the sarcolemmal voltage-gated L-type Ca(2+) channel (Ca(V)1.1). Ca(V)1.1 in turn triggers opening of the sarcoplasmic Ca(2+) release channel (RyR1) via interchannel protein-protein interaction to release Ca(2+) for myofibril contraction. Simultaneously to this EC coupling process, a small and slowly activating Ca(2+) inward current through Ca(V)1.1 is found in mammalian skeletal myotubes. The role of this Ca(2+) influx, which is not immediately required for EC coupling, is still enigmatic. Interestingly, whole-cell patch clamp experiments on freshly dissociated skeletal muscle myotubes from zebrafish larvae revealed the lack of such Ca(2+) currents. We identified two distinct isoforms of the pore-forming Ca(V)1.1alpha(1S) subunit in zebrafish that are differentially expressed in superficial slow and deep fast musculature. Both do not conduct Ca(2+) but merely act as voltage sensors to trigger opening of two likewise tissue-specific isoforms of RyR1. We further show that non-Ca(2+) conductivity of both Ca(V)1.1alpha(1S) isoforms is a common trait of all higher teleosts. This non-Ca(2+) conductivity of Ca(V)1.1 positions teleosts at the most-derived position of an evolutionary trajectory. Though EC coupling in early chordate muscles is activated by the influx of extracellular Ca(2+), it evolved toward Ca(V)1.1-RyR1 protein-protein interaction with a relatively small and slow influx of external Ca(2+) in tetrapods. Finally, the Ca(V)1.1 Ca(2+) influx was completely eliminated in higher teleost fishes.