Breakdown in immunological self tolerance, leading to autoimmune diseases such as multiple sclerosis, might arise from immune recognition of self proteins that have undergone heightened posttranslational modification under pathophysiological conditions. A posttranslational modification of particular interest is the deimination of Arg to citrulline, catalyzed by peptidylarginyl deiminase (PAD) enzymes. As a CD4(+) T cell-driven model of multiple sclerosis, we used experimental autoimmune encephalomyelitis (EAE) induced with the immunodominant 35-55 peptide of myelin oligodendrocyte glycoprotein (pMOG) in C57BL/6 mice to test whether citrullination of a T cell epitope can contribute to disease etiopathology. Immunization with an altered peptide ligand (APL) of pMOG with an Arg-->citrulline conversion at a TCR contact (residue 41) led to the activation of two populations of APL-responsive T cells that either did, or did not cross-react with the native pMOG peptide. This APL could induce EAE. However, this reflected the activation of T cells that cross-reacted with the native pMOG epitope, because prior tolerization of these T cells using pMOG prevented APL-induced EAE. Using a passive transfer model, we found that T cells that responded specifically to the citrullinated form of pMOG were neither necessary, nor sufficient to initiate the EAE lesion. Nevertheless, these cells could provoke exacerbation of pathology if transferred into mice with ongoing EAE. The PAD2 and PAD4 enzymes were markedly upregulated in the inflamed CNS. Therefore, once inflammation is established, citrullination of target autoantigens can allow an expanded repertoire of T cells to contribute to CNS pathology.