Extension of the NCAT phantom for the investigation of intra-fraction respiratory motion in IMRT using 4D Monte Carlo

Phys Med Biol. 2010 Mar 7;55(5):1475-90. doi: 10.1088/0031-9155/55/5/014. Epub 2010 Feb 16.

Abstract

The purpose of this work was to create a computational platform for studying motion in intensity modulated radiotherapy (IMRT). Specifically, the non-uniform rational B-spline (NURB) cardiac and torso (NCAT) phantom was modified for use in a four-dimensional Monte Carlo (4D-MC) simulation system to investigate the effect of respiratory-induced intra-fraction organ motion on IMRT dose distributions as a function of diaphragm motion, lesion size and lung density. Treatment plans for four clinical scenarios were designed: diaphragm peak-to-peak amplitude of 1 cm and 3 cm, and two lesion sizes--2 cm and 4 cm diameter placed in the lower lobe of the right lung. Lung density was changed for each phase using a conservation of mass calculation. Further, a new heterogeneous lung model was implemented and tested. Each lesion had an internal target volume (ITV) subsequently expanded by 15 mm isotropically to give the planning target volume (PTV). The PTV was prescribed to receive 72 Gy in 40 fractions. The MLC leaf sequence defined by the planning system for each patient was exported and used as input into the MC system. MC simulations using the dose planning method (DPM) code together with deformable image registration based on the NCAT deformation field were used to find a composite dose distribution for each phantom. These composite distributions were subsequently analyzed using information from the dose volume histograms (DVH). Lesion motion amplitude has the largest effect on the dose distribution. Tumor size was found to have a smaller effect and can be mitigated by ensuring the planning constraints are optimized for the tumor size. The use of a dynamic or heterogeneous lung density model over a respiratory cycle does not appear to be an important factor with a <or=0.6% change in the mean dose received by the ITV, PTV and right lung. The heterogeneous model increases the realism of the NCAT phantom and may provide more accurate simulations in radiation therapy investigations that use the phantom. This work further evaluates the NCAT phantom for use as a tool in radiation therapy research in addition to its extensive use in diagnostic imaging and nuclear medicine research. Our results indicate that the NCAT phantom, combined with 4D-MC simulations, is a useful tool in radiation therapy investigations and may allow the study of relative effects in many clinically relevant situations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dose Fractionation, Radiation*
  • Heart / radiation effects
  • Humans
  • Lung / pathology
  • Lung / physiopathology
  • Monte Carlo Method*
  • Movement*
  • Phantoms, Imaging*
  • Radiometry
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted
  • Radiotherapy, Intensity-Modulated / instrumentation*
  • Respiration*
  • Thorax / radiation effects