Little is known about the presence of the various membrane-located water channels, aquaporins (AQP), during the prenatal and postnatal development of the mouse submandibular salivary gland (SMG). To learn more about AQPs in the developing aspect of salivary glands, we investigated trends in the expression patterns of several AQPs using the embryonic, early postnatal, and young adult mouse SMGs as models. We have chosen AQPs previously found in salivary glands in other animals. Transcripts of AQPs 1, 3, 4, 5, and 8 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and quantified. Aquaporin proteins 1, 3, 4, and 5, but not AQP protein 8, were detected and quantified using western blotting. The various AQPs showed distinct transcript and protein-expression patterns. The change in trends may indicate that the importance of the various AQPs varies throughout the developmental stages in the mouse SMG. Their presence might be related to cell adhesion, migration, proliferation, apoptosis, transepithelial transport, osmosensing, or cell volume regulation; all roles that in the literature are linked to the various AQPs. Overall, this study demonstrates that AQP presentation varies and has a specific expression pattern during the development of mouse SMG. This feature may be important for glandular anatomical and physiological development.