Crystal structure and oligomeric state of the RetS signaling kinase sensory domain

Proteins. 2010 May 15;78(7):1631-40. doi: 10.1002/prot.22679.

Abstract

The opportunistic pathogen Pseudomonas aeruginosa may cause both acute and chronic-persistent infections in predisposed individuals. Acute infections require the presence of a functional type III secretion system (T3SS), whereas chronic P. aeruginosa infections are characterized by the formation of drug-resistant biofilms. The T3SS and biofilm formation are reciprocally regulated by the signaling kinases LadS, RetS, and GacS. RetS downregulates biofilm formation and upregulates expression of the T3SS through a unique mechanism. RetS forms a heterodimeric complex with GacS and thus prevents GacS autophosphorylation and downstream signaling. The signals that regulate RetS are not known but RetS possesses a distinctive periplasmic sensor domain that is believed to serve as receptor for the regulatory ligand. We have determined the crystal structure of the RetS sensory domain at 2.0 A resolution. The structure closely resembles those of carbohydrate binding modules of other proteins, suggesting that the elusive ligands are likely carbohydrate moieties. In addition to the conserved beta-sandwich structure, the sensory domain features two alpha helices which create a unique surface topology. Protein-protein crosslinking and fluorescence energy transfer experiments also revealed that the sensory domain dimerizes with a dissociation constant of K(d) = 580 +/- 50 nM, a result with interesting implications for our understanding of the underlying signaling mechanism.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry*
  • Crystallography, X-Ray
  • Molecular Sequence Data
  • Protein Conformation
  • Protein Folding
  • Protein Multimerization
  • Protein Structure, Tertiary
  • Pseudomonas aeruginosa / enzymology
  • Sequence Alignment
  • Signal Transduction

Substances

  • Bacterial Proteins
  • RetS protein, Pseudomonas aeruginosa