Objectives: To measure acoustic voice outcomes in children with bilateral cochlear implants and to compare these with established norms, as well as to determine whether these acoustic measures were influenced by duration of cochlear implant use, age at implantation, and overall "time in sound."
Design: Cross-sectional study.
Setting: Pediatric tertiary care cochlear implant center.
Patients: All children using bilateral cochlear implants who were followed up during a 4-month period at our implant center were invited to participate. Twenty-seven children (17 males and 10 females) aged 3 to 15 years were enrolled. Causes of deafness included congenital (n = 8), genetic (n = 8), meningitis (n = 3), cytomegalovirus (n = 2), and unknown (n = 6). The interval between first and second implantations ranged from simultaneous to 7.8 years (mean, 4.2 years).
Main outcome measures: Children completed acoustic voice testing using a Computerized Speech Lab and a Multi-Dimensional Voice Program. Acoustic results were compared with those of children receiving unilateral implants and with normative data.
Results: Compared with established pediatric normative data, children with bilateral implants demonstrated poor control of long-term frequency perturbation and long-term amplitude perturbation when vocalizing sustained phonations (P < .001 for both). This finding was consistent with data previously reported in children using unilateral cochlear implants. Long-term control of frequency perturbation improved as children used their bilateral cochlear implants over time and was significantly influenced by overall time in sound (P = .02).
Conclusions: Similar to unilateral cochlear implant users, children using bilateral implants have difficulty controlling long-term frequency perturbation and long-term amplitude perturbation during sustained phonations. These measures improved as the duration of usable hearing increases.