Spectacular athleticism is a conspicuous feature of many animal courtship displays yet surprisingly little is known about androgen dependence of skeletal muscles underlying these displays. Testosterone (T) acts through androgen receptors (ARs) to stimulate muscular male Golden-collared manakins of Panama to perform a remarkably athletic courtship display that includes loud wingsnaps generated by the rapid and forceful lifting of the wings. We tested the hypothesis that androgen sensitivity, reflected in the expression levels of AR mRNA, is a muscular adaptation supporting these courtship displays. Quantitative PCR showed substantially greater AR mRNA expression in all limb muscles of wild male and female manakins compared with two other avian species that do not perform athletic displays, zebra finches and ochre-bellied flycatchers. AR expression levels in the massive skeletal muscles were comparable with the minute oscine syringeal muscle but greater than levels in nonmuscular androgen targets that did not differ across species. Compared with zebra finches, male manakins also had greater activity of the T-activating enzyme 5 alpha-reductase in a wing-lifting muscle. In addition, low levels of estrogen receptor alpha (ER) mRNA were detected in all muscles of control, T-treated, and estradiol-treated manakins. Treatment of manakins with T, but not estradiol, significantly increased skeletal muscle ER expression, suggesting that ER expression is AR-dependent. These results confirm manakin limb muscles as important androgen targets where T may act to promote the speed, force, and/or endurance required for the manakin display. Androgen-sensitive muscular phenotypes may adapt males of many species to perform impressive athletic displays.