Aim: To evaluate the suitability of rupintrivir against Enterovirus 71 (EV71) induced severe clinical symptoms using computational methods.
Methods: The structure of EV71 3C protease was predicted by homology modeling. The binding free energies between rupintrivir and EV71 3C and human rhinovirus 3C protease were computed by molecular dynamics and molecular mechanics Poisson-Boltzmann/surface area and molecular mechanics generalized-born/surface area methods. EV71 3C fragments obtained from clinical samples collected during May to July 2008 in Shanghai were amplified by reverse-transcription and polymerase chain reaction and sequenced.
Results: We observed that rupintrivir had favorable binding affinity with EV71 3C protease (-10.76 kcal/mol). The variability of the 3C protein sequence in isolates of various outbreaks, including those obtained in our hospital from May to July 2008, were also analyzed to validate the conservation of the drug binding pocket.
Conclusion: Rupintrivir, whose safety profiles had been proved, is an attractive candidate and can be quickly utilized for treating severe EV71 infection.