Evaluation of different approaches for the estimation of daily yield from single milk testing scheme in cattle

J Dairy Res. 2010 May;77(2):137-43. doi: 10.1017/S0022029909990586. Epub 2009 Dec 24.

Abstract

Three models for the estimation of milk, fat and protein daily yield (DY) based on a.m. (AM) or p.m. (PM) milkings were compared. A total of 518 766 test-day records from 5078 dairy cattle farms obtained between March 2004 and April 2008 were analysed. The DY model was a linear model with DY as a dependent variable. In the PYR model and the DYR model, partial yield ratios (AM:DY and PM:DY) and daily yield ratios (DY:AM and DY:PM), respectively, were used as a dependent variable in the first step. In the second step, DY was estimated as a partial yield divided (PYR model) or multiplied (DYR model) by the estimated yield ratio from the first step. Models included the effect of partial yield (only in the DY model), milking interval, stage (month) of lactation and parity. Analysis of variance indicated that partial yield was the most important source of variation for the DY model whereas milking interval had the biggest effect in the PYR model and the DYR model. Differences in accuracy (correlation between the true and the estimated DY) between the models were negligible. On the other hand, models differed in the amount of bias (average error). The DYR model on average overestimated DY by 0.13 kg, 0.01 kg and 0.01 kg for milk, fat and protein, respectively. For the other two models the overall bias was almost zero. However, the DY model overestimated low and underestimated high DY owing to the well known regression property. The DYR model progressively overestimated high DY. These problems were not observed with the PYR model which seemed to be the best model. In this paper a relatively old topic was analysed and discussed from a new point of view, where the estimation of DY is based on modelling biologically more stable partial yield ratios rather than yield values from a.m. or p.m. milking.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Cattle
  • Dairying*
  • Fats / metabolism*
  • Female
  • Lactation / metabolism*
  • Milk / metabolism*
  • Milk Proteins / metabolism*
  • Models, Biological
  • Models, Statistical*
  • Time Factors

Substances

  • Fats
  • Milk Proteins