Spin interaction in octahedral zinc complexes of mono- and diradical Schiff and mannich bases

Inorg Chem. 2010 Jan 18;49(2):646-58. doi: 10.1021/ic901846u.

Abstract

The four Schiff bases 2-tert-butyl-4-methoxy-6-[(pyridin-2-ylmethylimino)methyl]phenol, 2,4-di-tert-butyl-6-[(pyridin-2-ylmethylimino)methyl]phenol, 2-tert-butyl-4-methoxy-6-(quinolin-8-yliminomethyl)phenol, and 2,4-di-tert-butyl-6-(quinolin-8-yliminomethyl)phenol) as well as one Mannich base, N,N',N,N'-bis[(2-hydroxy-3,5-di-tert-butylbenzyl)(2-pyridylmethyl)]ethylenediamine, and their zinc bis-phenolate complexes 1-5, respectively, have been prepared. The complexes 4 and 5 have been characterized by X-ray diffraction crystallography, showing a zinc ion within an octahedral environment, with a cis orientation of the phenolate moieties. 1-5 exhibit in their cyclic voltammetry curves two anodic reversible waves attributable to the successive oxidation of the phenolates into phenoxyl radicals. Bulk electrolysis at ca. +0.1 V affords the zinc-coordinated monophenoxyl radical species (1(*))(+)-(5(*))(+) characterized by UV-vis absorption bands at 400-440 nm. The more stable radicals are (3(*))(+) and (4(*))(+) (half-life higher than 90 min at 298 K), likely due to the increased charge delocalization within the quinoline moieties. These species exhibit a significant additional near-IR band (epsilon > 1650 M(-1) cm(-1)) attributed to a CT transition. In the two-electron-oxidized species (1(**))(2+)-(5(**))(2+) the radical spins present a weak magnetic coupling. EPR reveals an antiferromagnetic exchange interaction for (1(**))(2+)-(4(**))(2+), whereas an unusual ferromagnetic exchange coupling is operative in (5(**))(2+). The weak magnitude of experimental |J| values (within the 1-5 cm(-1) range) as well as their sign could be well reproduced by DFT calculations at the B3LYP level. The small energy gap between the ground and the first excited spin states allows us to investigate the zero-field splitting (ZFS) of the triplet by EPR spectroscopy. This parameter is found to be axial for all systems, with |D| values of 0.0163 cm(-1) for (1(**))(2+), 0.0182 cm(-1) for (2(**))(2+), 0.0144 cm(-1) for (3(**))(2+), 0.0160 cm(-1) for (4(**))(2+), and 0.0115 cm(-1) for (5(**))(2+). The trend between experimental ZFS is confirmed by DFT calculations, which give further insight regarding its sign (negative for all the compounds). Lower ZFS values are obtained for (2(**))(2+) compared to (1(**))(2+) (and also for (4(**))(2+) compared to (3(**))(2+)), which can be interpreted by an increased delocalization of the spin density over the methoxy para substituent. Significant spin population on the quinoline also contributes to a lowering of the |D| value, as observed when (3(**))(2+) is compared to (1(**))(2+) (and also when (4(**))(2+) is compared to (2(**))(2+)).

MeSH terms

  • Crystallography, X-Ray
  • Electron Spin Resonance Spectroscopy
  • Models, Molecular
  • Quantum Theory
  • Schiff Bases / chemistry*
  • Zinc Compounds / chemistry*

Substances

  • Schiff Bases
  • Zinc Compounds