NIH3T3 cells transfected with c-H-ras and/or c-myc genes were examined for differences in drug sensitivity. The five transfectants used were N8, NIH3T3-nm-1, pT22-3-nm-2, pP1-4 and pT22-3. They were transfected with pKOneo alone, pKOneo and c-myc, pKOneo and c-myc plus activated c-H-ras, normal c-H-ras and activated c-H-ras genes, respectively. The IC50s of cisplatin, 4-hydroperoxycyclophosphamide, adriamycin, melphalan, and CPT-11 were significantly higher for NIH3T3-nm-1 abd pT22-3-nm-2 than for the parental NIH3T3 and N8 cells. Transfection with normal and activated C-H-ras oncogenes only led to increases in the IC50s of alkylating agents. There was no significant difference between the IC50s of N8 and those of NIH3T3 parental cells to any of these anticancer agents. These results strongly suggest that the expression of the c-myc gene plays a role in the acquisition of drug resistance. The c-myc gene may therefore provide us with an important clue in determining the mechanism of drug resistance.