This study was undertaken to determine those structural features of phospholipid molecules which influence their enrichment in type II cell lamellar body material. Cultured fetal rabbit lung tissue was labeled with [1-14C]acetate, type II cells were isolated, and extracellular lamellar body and microsomal fractions were prepared. Radiolabeled molecular species of phosphatidylcholine (PC) and phosphatidylethanolamine were analyzed by high-performance liquid chromatography (HPLC), followed by silver nitrate thin-layer chromatography of HPLC peak fractions that overlapped. Compared with microsomes, lamellar body PC was selectively enriched with molecular species containing 14- and 16-carbon fatty acids and depleted of species containing 18-carbon fatty acids. Palmitoleic acid and an ether linkage positively influenced the enrichment of PC molecular species in the lamellar body material, but these structural features were secondary to the predominant influence of fatty acid chain length. In vivo, lung tissue normally contains low levels of palmitoleic acid; hence most unsaturated fatty acids are 18-carbons or longer. A cellular lipid-sorting mechanism that selects PCs by recognition of 14- and 16-carbon fatty acid chains (and not by recognition of fatty acid saturation) should serve to enrich the resulting pulmonary surfactant with disaturated molecular species of PC.