High resolution miniature dilatometer based on an atomic force microscope piezocantilever

Rev Sci Instrum. 2009 Nov;80(11):116101. doi: 10.1063/1.3258143.

Abstract

Thermal expansion, or dilation, is closely related to the specific heat, and provides useful information regarding material properties. The accurate measurement of dilation in confined spaces coupled with other limiting experimental environments such as low temperatures and rapidly changing high magnetic fields requires a new sensitive millimeter size dilatometer that has little or no temperature and field dependence. We have designed an ultracompact dilatometer using an atomic force microscope piezoresistive cantilever as the sensing element and demonstrated its versatility by studying the charge density waves in alpha uranium to high magnetic fields (up to 31 T). The performance of this piezoresistive dilatometer was comparable to that of a titanium capacitive dilatometer.