Delta-catenin is a brain-specific member of the adherens junction complex that localizes to the postsynaptic and dendritic compartments. This protein is likely critical for normal cognitive function; its hemizygous loss is linked to the severe mental retardation syndrome Cri-du-Chat and it directly interacts with presenilin-1 (PS1), the protein most frequently mutated in familial Alzheimer's disease. Here we examine dendritic structure and cortical function in vivo in mice lacking delta-catenin. We find that in cerebral cortex of 5-week-old mice, dendritic complexity, spine density, and cortical responsiveness are similar between mutant and littermate controls; thereafter, mutant mice experience progressive dendritic retraction, a reduction in spine density and stability, and concomitant reductions in cortical responsiveness. Our results indicate that delta-catenin regulates the maintenance of dendrites and dendritic spines in mature cortex but does not appear to be necessary for the initial establishment of these structures during development.