Self-assembly of soft nanoparticles with tunable patchiness

Nat Nanotechnol. 2009 Nov;4(11):721-6. doi: 10.1038/nnano.2009.232. Epub 2009 Aug 30.

Abstract

Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons, Janus particles, patchy colloids and colloidal molecules. Recent models that include attractive regions or 'patches' on the surface of the nanoparticles predict a wealth of intricate modes of assembly. Interactions between such particles are also important in a range of phenomena including protein aggregation and crystallization, re-entrant phase transitions, assembly of nanoemulsions and the organization of nanoparticles into nanowires. Here, we report the synthesis of 6-nm nanoparticles with dynamic hydrophobic patches and show that they can form reversible self-assembled structures in aqueous solution that become topologically more connected upon dilution. The organization is based on guest-host supramolecular chemistry with the nanoparticles composed of a hydrophobic dendrimer host molecule and water-soluble hydrophilic guest molecules. The work demonstrates that subtle changes in hierarchal composition and/or concentration can dramatically change mesoscopic ordering.

Publication types

  • Research Support, Non-U.S. Gov't