Background: Osteosarcoma is the most prevalent primary malignant bone tumour in children and young adults, with poor survival in 40% of patients. To identify the signalling pathways involved in tumourigenesis, we compared gene expression in osteosarcoma with that in its presumed normal counterparts.
Methods: Genome-wide expression profiles were generated from 25 high-grade central osteosarcoma prechemotherapy biopsies, 5 osteoblastomas, 5 mesenchymal stem cell (MSC) populations and these same MSCs differentiated into osteoblasts. Genes that were differentially expressed were analysed in the context of the pathways in which they function using the GenMAPP programme.
Results: MSCs, osteoblasts, osteoblastomas and osteosarcomas clustered separately and thousands of differentially expressed genes were identified. The most significantly altered pathways are involved in cell cycle regulation and DNA replication. Several upstream components of the Wnt signalling pathway are downregulated in osteosarcoma. Two genes involved in degradation of beta-catenin protein, the key effectors of Wnt signalling, Axin and GSK3-beta, show decreased expression, suggesting that Wnt signalling is no longer under the control of regular signals. Comparing benign osteoblastomas with osteosarcomas identified cell cycle regulation as the most prominently changed pathway.
Conclusion: These results show that upregulation of the cell cycle and downregulation of Wnt signalling have an important role in osteosarcoma genesis. Gene expression differences between highly malignant osteosarcoma and benign osteoblastoma involve cell cycle regulation.