2009 marks not only the 200th anniversary of Darwin's birth but also publication of the first scientific evolutionary theory, Lamarck's Philosophie Zoologique. While Lamarck embraced the notion of the inheritance of acquired characters, he did not invent it (Burkhardt, 1984). New phenomena discovered recently offer molecular pathways for the transmission of several acquired characters. Ciliates have long provided model systems to study phenomena that bypass traditional modes of inheritance. RNA, normally thought of as a conduit in gene expression, displays a novel mode of action in ciliated protozoa. For example, maternal RNA templates provide both an organizing guide for DNA rearrangements in Oxytricha and a template that can transmit spontaneous mutations that may arise during somatic growth to the next generation, providing two such mechanisms of so-called Lamarckian inheritance. This suggests that the somatic ciliate genome is really an 'epigenome', formed through templates and signals arising from the previous generation. This review will discuss these new biological roles for RNA, including non-coding 'template' RNA molecules. The evolutionary consequences of viable mechanisms in ciliates to transmit acquired characters may create an additional store of heritable variation that contributes to the cosmopolitan success of this diverse lineage of microbial eukaryotes.