Nine dihydroartemisinin acetal dimers (6-14) with diversely functionalized linker units were synthesized and tested for in vitro antiprotozoal, anticancer and antimicrobial activity. Compounds 6, 7 and 11 [IC(50): 3.0-6.7 nM (D6) and 4.2-5.9 nM (W2)] were appreciably more active than artemisinin (1) [IC(50): 32.9 nM (D6) and 42.5 nM (W2)] against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of the malaria parasite, Plasmodium falciparum. Compounds 10, 13 and 14 displayed enhanced anticancer activity in a number of cell lines compared to the control drug, doxorubicin. The antifungal activity of 7 and 12 against Cryptococcus neoformans (IC(50): 0.16 and 0.55 microM, respectively) was also higher compared to the control drug, amphotericin B. The antileishmanial and antibacterial activities were marginal. A number of dihydroartemisinin acetal monomers (15-17) and a trimer (18) were isolated as byproducts from the dimer synthesis and were also tested for biological activity.