Endogenous opioids regulate expression of experimental autoimmune encephalomyelitis: a new paradigm for the treatment of multiple sclerosis

Exp Biol Med (Maywood). 2009 Nov;234(11):1383-92. doi: 10.3181/0906-RM-189.

Abstract

Preclinical investigations utilizing murine experimental auto-immune encephalomyelitis (EAE), as well as clinical observations in patients with multiple sclerosis (MS), may suggest alteration of endogenous opioid systems in MS. In this study we used the opioid antagonist naltrexone (NTX) to invoke a continuous (High Dose NTX, HDN) or intermittent (Low Dose NTX, LDN) opioid receptor blockade in order to elucidate the role of native opioid peptides in EAE. A mouse model of myelin oligodendrocyte glycoprotein (MOG)-induced EAE was employed in conjunction with daily treatment of LDN (0.1 mg/kg, NTX), HDN (10 mg/kg NTX), or vehicle (saline). No differences in neurological status (incidence, severity, disease index), or neuropathological assessment (activated astrocytes, demyelination, neuronal injury), were noted between MOG-induced mice receiving HDN or vehicle. Over 33% of the MOG-treated animals receiving LDN did not exhibit behavioral signs of disease, and the severity and disease index of the LDN-treated mice were markedly reduced from cohorts injected with vehicle. Although all LDN animals demonstrated neuropathological signs of EAE, LDN-treated mice without behavioral signs of disease had markedly lower levels of activated astrocytes and demyelination than LDN- or vehicle-treated animals with disease. These results imply that endogenous opioids, evoked by treatment with LDN and acting in the rebound period from drug exposure, are inhibitory to the onset and progression of EAE, and suggest that clinical studies of LDN are merited in MS and possibly in other autoimmune disorders.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analgesics, Opioid / metabolism*
  • Animals
  • Dose-Response Relationship, Drug
  • Encephalomyelitis, Autoimmune, Experimental / metabolism*
  • Encephalomyelitis, Autoimmune, Experimental / pathology*
  • Female
  • Mice
  • Mice, Inbred C57BL
  • Multiple Sclerosis / drug therapy*
  • Multiple Sclerosis / pathology
  • Myelin Proteins
  • Myelin-Associated Glycoprotein
  • Myelin-Oligodendrocyte Glycoprotein
  • Naltrexone / administration & dosage
  • Naltrexone / pharmacology
  • Naltrexone / therapeutic use*
  • Nervous System / drug effects
  • Nervous System / pathology

Substances

  • Analgesics, Opioid
  • Mog protein, mouse
  • Myelin Proteins
  • Myelin-Associated Glycoprotein
  • Myelin-Oligodendrocyte Glycoprotein
  • Naltrexone