Atomic force microscopy investigation of the morphology and topography of colistin-heteroresistant Acinetobacter baumannii strains as a function of growth phase and in response to colistin treatment

Antimicrob Agents Chemother. 2009 Dec;53(12):4979-86. doi: 10.1128/AAC.00497-09. Epub 2009 Sep 28.

Abstract

The prevalence of infections caused by multidrug-resistant gram-negative Acinetobacter baumannii strains and the lack of novel antibiotics under development are posing a global dilemma, forcing a resurgence of the last-line antibiotic colistin. Our aim was to use atomic force microscopy (AFM) to investigate the morphology and topography of paired colistin-susceptible and -resistant cells from colistin-heteroresistant A. baumannii strains as a function of bacterial growth phase and colistin exposure. An optimal AFM bacterial sample preparation protocol was established and applied to examine three paired strains. Images revealed rod-shaped colistin-susceptible cells (1.65 +/- 0.27 microm by 0.98 +/- 0.07 microm) at mid-logarithmic phase, in contrast to spherical colistin-resistant cells (1.03 +/- 0.09 microm); the latter were also more diverse in appearance and exhibited a rougher surface topography (7.05 +/- 1.3 nm versus 11.4 +/- 2.5 nm for susceptible versus resistant, respectively). Cellular elongation up to approximately 18 microm at stationary phase was more commonly observed in susceptible strains, although these "worm-like" cells were also observed occasionally in the resistant population. The effects of colistin exposure on the cell surface of colistin-susceptible and -resistant cells were found to be similar; topographical changes were minor in response to 0.5 microg/ml colistin; however, at 4 microg/ml colistin, a significant degree of surface disruption was detected. At 32 microg/ml colistin, cellular clumping and surface smoothening were evident. Our study has demonstrated for the first time substantial morphological and topographical differences between colistin-susceptible and -resistant cells from heteroresistant A. baumannii strains. These results contribute to an understanding of colistin action and resistance in regard to this problematic pathogen.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acinetobacter baumannii / cytology*
  • Acinetobacter baumannii / drug effects*
  • Acinetobacter baumannii / growth & development
  • Anti-Bacterial Agents / pharmacology*
  • Colistin / pharmacology*
  • Drug Resistance, Multiple, Bacterial / physiology*
  • Microbial Sensitivity Tests
  • Microscopy, Atomic Force

Substances

  • Anti-Bacterial Agents
  • Colistin