In rabies virus, the attachment of the L polymerase (L) to the viral nucleocapsids (NCs)-a nucleoprotein (N)-RNA complex that serves as template for RNA transcription and replication-is mediated by the polymerase cofactor, the phosphoprotein (P). P forms dimers (P(2)) that bind through their C-terminal domains (P(CTD)) to the C-terminal region of the N. Recombinant circular N(m)-RNA complexes containing 9 to 12 protomers of N (hereafter, the subscript m denotes the number of N protomers) served here as model systems for studying the binding of P to NC-like N(m)-RNA complexes. Titration experiments show that there are only two equivalent and independent binding sites for P dimers on the N(m)-RNA rings and that each P dimer binds through a single P(CTD). A dissociation constant in the nanomolar range (160+/-20 nM) was measured by surface plasmon resonance, indicating a strong interaction between the two partners. Small-angle X-ray scattering (SAXS) data and small-angle neutron scattering data showed that binding of two P(CTD) had almost no effect on the size and shape of the N(m)-RNA rings, whereas binding of two P(2) significantly increased the size of the complexes. SAXS data and molecular modeling were used to add flexible loops (N(NTD) loop, amino acids 105-118; N(CTD) loop, amino acids 376-397) missing in the recently solved crystal structure of the circular N(11)-RNA complex and to build a model for the N(10)-RNA complex. Structural models for the N(m)-RNA-(P(CTD))(2) complexes were then built by docking the known P(CTD) structure onto the completed structures of the circular N(10)-RNA and N(11)-RNA complexes. A multiple-stage flexible docking procedure was used to generate decoys, and SAXS and biochemical data were used for filtering the models. In the refined model, the P(CTD) is bound to the C-terminal top of one N protomer (N(i)), with the C-terminal helix (alpha(6)) of P(CTD) lying on helix alpha(14) of N(i). By an induced-fit mechanism, the N(CTD) loop of the same protomer (N(i)) and that of the adjacent one (N(i)(-1)) mold around the P(CTD), making extensive protein-protein contacts that could explain the strong affinity of P for its template. The structural model is in agreement with available biochemical data and provides new insights on the mechanism of attachment of the polymerase complex to the NC template.