Lipopolysaccharide (LPS), CpG-containing phosphothioate oligonucleotides (CpG) and various cytokines impact chronic lymphocytic leukemia (CLL) B cells. For example, they influence cell cycle entry, expression of co-receptors, and CD20. Rituximab (RTX), for which CD20 molecule is the target, proved to be less efficient in CLL than in lymphoma. This is accounted for by a lower CD20 level in the former than in the latter B lymphocytes. CD20 transcription is mediated by four transcription factors, of which only purine-rich box-1 (PU.1) is reduced in CLL. We thus examined the effects of LPS, CpG, tumor necrosis factor-alpha, interferon-alpha, interleukin (IL)-3, IL-4, IL-21, granulocyte macrophage-colony stimulating factor (CSF), and granulocyte-CSF on the transcription of PU.1, and the subsequent expression of CD20. It appeared that CpG was unique in that it raised the membrane expression of CD20 on malignant B cells, owing to a PU.1 independent increase in its gene transcription. Moreover, RTX-induced complement-mediated lysis was also ameliorated. Thus, CpG accelerates the transcription of CD20 independently of PU.1, and thereby improves the efficacy of RTX in CLL.