Introduction: C-peptide measurement in blood or 24-h urine samples provides useful information regarding endogenous insulin secretion, but problems related to the rapid degradation of C-peptide in blood and difficulty of 24-h urine collection have limited widespread routine clinical use of this test. We assessed the feasibility of measuring urinary C-peptide (UCP) with correction for creatinine concentration in single urine samples.
Methods: We analyzed UCP using a routine electrochemiluminescence immunoassay in samples from 21 healthy volunteers. We investigated the stability of UCP with different preservatives and storage conditions and compared the reproducibility of urinary C-peptide/creatinine ratio (UCPCR) in first- and second-void fasting urines, then assessed correlations with 24-h collections.
Results: UCPCR was unchanged at room temperature for 24 h and at 4 degrees C for 72 h even in the absence of preservative. UCPCR collected in boric acid was stable at room temperature for 72 h. UCPCR remained stable after 7 freeze-thaw cycles but decreased with freezer storage time and dropped to 82%-84% of baseline by 90 days at -20 degrees C. Second-void fasting UCPCRs were lower than first-void (median 0.78 vs 1.31, P = 0.0003) and showed less variation (CV 33% vs 52%), as second-void UCPCRs were not influenced by evening food-related insulin secretion. Second-void fasting UCPCR was highly correlated with 24-h UCP (r = 0.8, P = 0.00006).
Conclusions: Second-void fasting UCPCR is a reproducible measure that correlates well with 24-h UCP in normal samples. The 3-day stability of UCPCR at room temperature greatly increases its potential clinical utility.