Seizures increase cell proliferation in the dentate gyrus by shortening progenitor cell-cycle length

Epilepsia. 2009 Dec;50(12):2638-47. doi: 10.1111/j.1528-1167.2009.02244.x. Epub 2009 Aug 8.

Abstract

Purpose: A prolonged seizure, status epileptics (SE), is a potent stimulus for increased neurogenesis in the dentate gyrus of the hippocampus. Molecular mechanisms that regulate normal and pathologic cell birth in the dentate gyrus are poorly understood.

Methods: Lithium-pilocarpine was used to induce SE in immature postnatal day 20 rats. Newborn cells in the dentate were labeled with bromo-deoxyuridine to determine a time-course of cell proliferation, and measure cell-cycle length. In addition, we studied expression by Western blot and immunohistochemistry of two known inhibitors of G(1)-S cell-cycle progression P27/Kip1 and P15/Ink4b following SE.

Results: Cell proliferation in the dentate gyrus increases starting 2 h after SE and is sustained for 40 days. Increased cell proliferation following SE is associated with a shortened dentate gyrus progenitor's cell cycle, 15 h in control to 12 h in the SE animals. To identify molecules responsible for the shortened progenitor cell cycle we studied inhibitors of cell-cycle progression P27/Kip1, and P15/Ink4b. We find decreased phosphorylation at P27/Kip1 Serine 10 and Threonine 187 following SE. Although total P27/Kip1 and P15/Ink4b levels were not altered after SE, P27/Kip1 immunoreactivity was minimal in newborn but increased with maturation of the dentate granule neurons.

Discussion: The sustained increase in dentate gyrus cell proliferation following SE provides a large pool of immature dentate granule cells prior to development of spontaneous seizures. A decrease in cell-cycle length of dentate gyrus progenitors is at least partially responsible for increased numbers of newborn cells following SE.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Cell Cycle / physiology
  • Cell Proliferation
  • Dentate Gyrus / physiology*
  • Hippocampus
  • Humans
  • Immunohistochemistry
  • Lithium
  • Neurons
  • Pilocarpine
  • Status Epilepticus / physiopathology*
  • Stem Cells / physiology

Substances

  • Pilocarpine
  • Lithium