Background: Tissue factor (TF), the main initiator of blood coagulation, is also a signaling protein that regulates cancer progression. TF synthesis was recently shown to be affected by tumor suppressor genes (TSGs) in tumor cell lines. We therefore studied TF gene (F3) expression and the status of genes coding for tumor protein p53 (TP53), phosphatase and tensin homolog (PTEN), and serine/threonine kinase 11 (STK11) in non-small cell lung cancer (NSCLC). Heparanase (HPSE) gene expression was also measured because this endo-beta-D-glucuronidase was recently shown to enhance TF gene expression.
Methods: TF and heparanase mRNA expression was measured by real-time PCR in 53 NSCLC tumors. Exons 5-8 of TP53 were sequenced from genomic DNA. Mutations of PTEN and STK11 were screened by multiplex ligation-dependent probe amplification.
Results: TF mRNA levels were significantly higher in T(3)-T(4) tumors (P = 0.04) and in stages III-IV of NSCLC (P = 0.03). Mutations of TP53, STK11, and PTEN were identified in 20 (37.7%), 21 (39%), and 20 (37.7%) of tumors, respectively. TF expression was higher in mutated TP53 (TP53(Mut)) (P = 0.02) and PTEN(Mut) (P = 0.03) samples. Moreover, TF mRNA increased from 2700 copies (no mutation) to 11 6415 when 3 TSG were mutated. Heparanase gene expression did not differ according to TF gene (F3) expression or TSG mutation. The median survival time was shorter in patients with tumor TF mRNA levels above median values (relative risk 2.2; P = 0.03, multivariate analysis) and when TP53 was mutated (relative risk 1.8; P = 0.02).
Conclusions: These results provide clear evidence that combined oncogene events affecting TSG dramatically increase TF gene expression in lung tumors. Moreover, this study suggests that TF gene expression could be used as a prognostic marker in NSCLC.