Fragile X mental retardation protein regulates the levels of scaffold proteins and glutamate receptors in postsynaptic densities

J Biol Chem. 2009 Sep 18;284(38):25479-87. doi: 10.1074/jbc.M109.042663. Epub 2009 Jul 28.

Abstract

Functional absence of fragile X mental retardation protein (FMRP) causes the fragile X syndrome, a hereditary form of mental retardation characterized by a change in dendritic spine morphology. The RNA-binding protein FMRP has been implicated in regulating postsynaptic protein synthesis. Here we have analyzed whether the abundance of scaffold proteins and neurotransmitter receptor subunits in postsynaptic densities (PSDs) is altered in the neocortex and hippocampus of FMRP-deficient mice. Whereas the levels of several PSD components are unchanged, concentrations of Shank1 and SAPAP scaffold proteins and various glutamate receptor subunits are altered in both adult and juvenile knock-out mice. With the exception of slightly increased hippocampal SAPAP2 mRNA levels in adult animals, altered postsynaptic protein concentrations do not correlate with similar changes in total and synaptic levels of corresponding mRNAs. Thus, loss of FMRP in neurons appears to mainly affect the translation and not the abundance of particular brain transcripts. Semi-quantitative analysis of RNA levels in FMRP immunoprecipitates showed that in the mouse brain mRNAs encoding PSD components, such as Shank1, SAPAP1-3, PSD-95, and the glutamate receptor subunits NR1 and NR2B, are associated with FMRP. Luciferase reporter assays performed in primary cortical neurons from knock-out and wild-type mice indicate that FMRP silences translation of Shank1 mRNAs via their 3'-untranslated region. Activation of metabotropic glutamate receptors relieves translational suppression. As Shank1 controls dendritic spine morphology, our data suggest that dysregulation of Shank1 synthesis may significantly contribute to the abnormal spine development and function observed in brains of fragile X syndrome patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dendritic Spines / genetics
  • Dendritic Spines / metabolism
  • Disks Large Homolog 4 Protein
  • Fragile X Mental Retardation Protein / genetics
  • Fragile X Mental Retardation Protein / metabolism*
  • Fragile X Syndrome / genetics
  • Fragile X Syndrome / metabolism
  • Guanylate Kinases
  • Hippocampus / metabolism*
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Mice
  • Mice, Knockout
  • Neocortex / metabolism*
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism
  • Receptors, N-Methyl-D-Aspartate / genetics
  • Receptors, N-Methyl-D-Aspartate / metabolism*
  • SAP90-PSD95 Associated Proteins
  • Synaptic Membranes / metabolism*

Substances

  • Disks Large Homolog 4 Protein
  • Dlg4 protein, mouse
  • Fmr1 protein, mouse
  • Intracellular Signaling Peptides and Proteins
  • Membrane Proteins
  • NR1 NMDA receptor
  • NR2B NMDA receptor
  • Nerve Tissue Proteins
  • Receptors, N-Methyl-D-Aspartate
  • SAP90-PSD95 Associated Proteins
  • SHANK1 protein, mouse
  • Sapap3 protein, mouse
  • Fragile X Mental Retardation Protein
  • Guanylate Kinases