Engineered 3D tissue models for cell-laden microfluidic channels

Anal Bioanal Chem. 2009 Sep;395(1):185-93. doi: 10.1007/s00216-009-2935-1. Epub 2009 Jul 21.

Abstract

Delivery of nutrients and oxygen within three-dimensional (3D) tissue constructs is important to maintain cell viability. We built 3D cell-laden hydrogels to validate a new tissue perfusion model that takes into account nutrition consumption. The model system was analyzed by simulating theoretical nutrient diffusion into cell-laden hydrogels. We carried out a parametric study considering different microchannel sizes and inter-channel separation in the hydrogel. We hypothesized that nutrient consumption needs to be taken into account when optimizing the perfusion channel size and separation. We validated the hypothesis by experiments. We fabricated circular microchannels (r = 400 microm) in 3D cell-laden hydrogel constructs (R = 7.5 mm, volume = 5 ml). These channels were positioned either individually or in parallel within hydrogels to increase nutrient and oxygen transport as a way to improve cell viability. We quantified the spatial distribution of viable cells within 3D hydrogel scaffolds without channels and with single- and dual-perfusion microfluidic channels. We investigated quantitatively the cell viability as a function of radial distance from the channels using experimental data and mathematical modeling of diffusion profiles. Our simulations show that a large-channel radius as well as a large channel to channel distance diffuse nutrients farther through a 3D hydrogel. This is important since our results reveal that there is a close correlation between nutrient profiles and cell viability across the hydrogel.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3 Cells
  • Animals
  • Cell Survival
  • Cells
  • Food
  • Hydrogels
  • Mice
  • Microfluidics / instrumentation
  • Microfluidics / methods*
  • Oxygen
  • Perfusion
  • Tissue Engineering / methods*

Substances

  • Hydrogels
  • Oxygen