Purpose: To compare dose distributions in targeted tissues (prostate, seminal vesicles, pelvic regional nodes) and nontargeted tissues in the pelvis with intensity-modulated radiotherapy (IMRT) and forward-planned, double-scattered, three-dimensional proton radiotherapy (3D-PRT).
Methods and materials: IMRT, IMRT followed by a prostate 3D-PRT boost (IMRT/3D-PRT), and 3D-PRT plans were created for 5 high-risk prostate cancer patients (n = 15 plans). A 78-CGE/Gy dose was prescribed to the prostate and proximal seminal vesicles and a 46-CGE/Gy was prescribed to the pelvic nodes. Various dosimetric endpoints were compared.
Results: Target coverage of the prostate and nodal planning target volumes was adequate for all three plans. Compared with the IMRT and IMRT/3D-PRT plans, the 3D-PRT plans reduced the mean dose to the rectum, rectal wall, bladder, bladder wall, small bowel, and pelvis. The relative benefit of 3D-PRT (vs IMRT) at reducing the rectum and rectal wall V5-V40 was 53% to 71% (p < 0.05). For the bladder and bladder wall, the relative benefit for V5 to V40 CGE/Gy was 40% to 63% (p < 0.05). The relative benefit for reducing the volume of small bowel irradiated from 5 to 30 CGE/Gy in the 3D-PRT ranged from 62% to 69% (p < 0.05). Use of 3D-PRT did not produce the typical low-dose "bath" of radiation to the pelvis seen with IMRT. Femoral head doses were higher for the 3D-PRT.
Conclusions: Use of 3D-PRT significantly reduced the dose to normal tissues in the pelvis while maintaining adequate target coverage compared with IMRT or IMRT/3D-PRT. When treating the prostate, seminal vesicles, and pelvic lymph nodes in prostate cancer, proton therapy may improve the therapeutic ratio beyond what is possible with IMRT.