The extracellular matrix protein fibronectin is implicated in neuronal regeneration in the peripheral nervous system. In the central nervous system (CNS), fibronectin is up-regulated at sites of penetrating injuries and stroke; however, CNS neurons down-regulate the fibronectin receptor alpha5beta1 integrin during differentiation and generally respond poorly to fibronectin. NT2N CNS neuron-like cells (derived from NT2 precursor cells) have been used in preclinical and clinical studies for treatment of stroke and a variety of CNS injury and disease models. Here we show that, like primary CNS neurons, NT2N cells down-regulate alpha5beta1 integrin during differentiation and respond poorly to fibronectin. The poor neurite outgrowth by NT2N cells on fibronectin can be rescued by transducing NT2 precursors with a retroviral vector expressing alpha5 integrin under the control of the murine stem cell virus 5' long terminal repeat. Sustained alpha5 integrin expression is compatible with the CNS-like neuronal differentiation of NT2N cells and does not prevent robust neurite outgrowth on other integrin ligands. Thus, alpha5 integrin expression in CNS neuronal precursor cells may provide a strategy for enhancing the outgrowth and survival of implanted cells in cell-replacement therapies for CNS injury and disease.