The regulation of centrosome number and function underlies bipolar mitotic spindle formation and genetic integrity. Cancer cells both in culture and in situ exhibit a wide range of centrosome abnormalities. Here, we briefly review advances in our understanding of the pathways that govern normal centrosome function and outline the potential causes and consequences of their deregulation in disease. There is ample observational but little experimental evidence to support the conventional model that centrosome dysfunction causes genomic instability and, as a result, cancer. This model has been challenged by recent studies that have uncovered evidence of a direct link between centrosome function in asymmetric cell division and tumourigenesis. Thus, it is timely to discuss the provocative idea that, in certain tissues, abnormal centrosomes drive malignant transformation not by generating genomic instability but by deregulating asymmetric cell division.