Novel dosimetric phantom for quality assurance of volumetric modulated arc therapy

Med Phys. 2009 May;36(5):1813-21. doi: 10.1118/1.3117563.

Abstract

The objective of this work is to assess the suitability and performance of a new dosimeter system with a novel geometry for the quality assurance (QA) of volumetric modulated arc therapy (VMAT). The new dosimeter system consists of a hollow cylinder (15 and 25 cm inner and outer diameters) with 124 diodes embedded in the phantom's cylindrical wall forming four rings of detectors. For coplanar beams, the cylindrical geometry and the ring diode pattern offer the advantage of invariant perpendicular incidence on the beam central axis for any gantry angle and also have the benefit of increasing the detector density as both walls of the cylinder sample the beam. Other advantages include real-time readout and reduced weight with the hollow phantom shape. A calibration method taking into account the variation in radiation sensitivity of the diodes as a function of gantry angle was developed and implemented. In this work, the new dosimeter system was used in integrating mode to perform composite dose measurements along the cylindrical surface supporting the diodes. The reproducibility of the dosimeter response and the angular dependence of the diodes were assessed using simple 6 MV photon static beams. The performance of the new dosimeter system for VMAT QA was then evaluated using VMAT plans designed for a head and neck, an abdominal sarcoma, and a prostate patient. These plans were optimized with 90 control points (CPs) and additional versions of each plan were generated by increasing the number of CPs to 180 and 360 using linear interpolation. The relative dose measured with the dosimeter system for the VMAT plans was compared to the corresponding TPS dose map in terms of relative dose difference (% deltaD) and distance to agreement (DTA). The dosimeter system's sensitivity to gantry rotation offset and scaling errors as well as setup errors was also evaluated. For static beams, the dosimeter system offered good reproducibility and demonstrated small residual diode angular dependence after calibration. For VMAT deliveries, the agreement between measured and calculated doses was good with > or = 86.4% of the diodes satisfying 3% of % deltaD or 2 mm DTA for the 180 CP plans. The phantom offered sufficient sensitivity for the detection of small gantry rotation offset (3 degrees) and scaling errors (1 degree) as well as phantom setup errors of 1 mm, although the results were plan dependent. With its novel geometry, the dosimeter system was also able to experimentally demonstrate the discretization effect of the number of CPs used in the TPS to simulate a continuous arc. These results demonstrate the suitability of the new dosimeter system for the patient-specific QA of VMAT plans and suggest that the dosimeter system can be an effective tool in the routine QA and commissioning of treatment machines capable of VMAT delivery and cone-beam CT image guidance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Body Burden*
  • Computer-Aided Design
  • Equipment Design
  • Equipment Failure Analysis
  • Phantoms, Imaging
  • Quality Assurance, Health Care / methods*
  • Radiometry / instrumentation*
  • Radiotherapy Dosage
  • Radiotherapy, Conformal / instrumentation*
  • Reproducibility of Results
  • Semiconductors
  • Sensitivity and Specificity