A role for calreticulin, an endoplasmic reticulum (ER)-resident, Ca(2+)-binding chaperone, has recently emerged in the context of cardiomyogenesis. We previously proposed calreticulin to be a novel cardiac fetal gene, because calreticulin knockout causes embryonic lethality in mice as a result of cardiac defects, it is transiently activated during heart development, and heart-targeted overexpression of constitutively active calcineurin in calreticulin-null mice rescues the lethal phenotype. Calreticulin affects Ca(2+) homeostasis and expression of adhesion-related genes. Using cardiomyocytes derived from both calreticulin-null and wild-type embryonic stem (ES) cells, we show here that cardiomyogenesis from calreticulin-null ES cells is accelerated but deregulated, such that the myofibrils of calreticulin-null cardiomyocytes become disorganized and disintegrate with time in culture. We have previously shown that the disorganization of the actin cytoskeleton in calreticulin-null cells may be explained, at least in part, by the downregulation of adhesion proteins, implying that calreticulin ablation causes adhesion-related defects. Here, upon examination of adhesion proteins, we found that vinculin is downregulated in calreticulin-null cardiomyocytes. We also found c-Src activity to be higher in calreticulin-null cardiomyocytes than in wild-type cardiomyocytes, and c-Src activity is affected by both calreticulin and [Ca(2+)]. Finally, we show that calreticulin and calsequestrin, the major Ca(2+) storage proteins of the ER and sarcoplasmic reticulum, respectively, exhibit alternate distributions. This suggests that calreticulin may have a housekeeping role to play in mature cardiomyocytes as well as during cardiomyogenesis. We propose here that calreticulin, an ER Ca(2+) storage protein, is a crucial regulator of cardiomyogenesis whose presence is required for controlled cardiomyocyte development from ES cells.