Locating areas of seafloor contamination caused by heavy oil spills is challenging, in large part because of observational limitations in aquatic subsurface environments. Accepted methods for surveying and locating sunken oil are generally slow, labor intensive and spatially imprecise. This paper describes a method to locate seafloor contamination caused by heavy oil fractions using in situ mass spectrometry and concurrent acoustic navigation. We present results of laboratory sensitivity tests and proof-of-concept evaluations conducted at the US Coast Guard OHMSETT national oil spill response test facility. Preliminary results from a robotic seafloor contamination survey conducted in deep water using the mass spectrometer and a geo-referenced acoustic navigation system are also described. Results indicate that this technological approach can accurately localize seafloor oil contamination in real-time at spatial resolutions better than a decimeter.