PET characteristics of a dedicated breast PET/CT scanner prototype

Phys Med Biol. 2009 Jul 7;54(13):4273-87. doi: 10.1088/0031-9155/54/13/020. Epub 2009 Jun 17.

Abstract

A dedicated breast PET/CT system has been constructed at our institution, with the goal of having increased spatial resolution and sensitivity compared to whole-body systems. The purpose of this work is to describe the design and the performance characteristics of the PET component of this device. Average spatial resolution of a line source in warm background using maximum a posteriori (MAP) reconstruction was 2.5 mm, while the average spatial resolution of a phantom containing point sources using filtered back projection (FBP) was 3.27 mm. A sensitivity profile was computed with a point source translated across the axial field of view (FOV) and a peak sensitivity of 1.64% was measured at the center of the FOV. The average energy resolution determined on a per-crystal basis was 25%. The characteristic dead time for the front-end electronics and data acquisition (DAQ) was determined to be 145 ns and 3.6 micros, respectively. With no activity outside the FOV, a peak noise-equivalent count rate of 18.6 kcps was achieved at 318 microCi (11.766 MBq) in a cylindrical phantom of diameter 75 mm. After the effects of exposing PET detectors to x-ray flux were evaluated and ameliorated, a combined PET/CT scan was performed. The percentage standard deviations of uniformity along axial and transaxial directions were 3.7% and 2.8%, respectively. The impact of the increased reconstructed spatial resolution compared to typical whole-body PET scanners is currently being assessed in a clinical trial.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / diagnosis*
  • Humans
  • Image Enhancement / instrumentation*
  • Phantoms, Imaging
  • Pilot Projects
  • Positron-Emission Tomography / instrumentation*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Subtraction Technique / instrumentation*
  • Tomography, X-Ray Computed / instrumentation*