The type IV pilus is an important adhesin in the establishment of infection by Pseudomonas aeruginosa. We have previously reported on a synthetic peptide vaccine targeting the receptor-binding domain of the main structural subunit of the pilus, PilA. The receptor-binding domain is a 14-residue disulfide loop at the C-terminal end of the pilin protein. The objective of this study was to compare the immunogenicity of a peptide-conjugate to a protein subunit immunogen to determine which was superior for use in an anti-pilus vaccine. BALB/c mice were immunized with the native PAK strain pilin protein and a synthetic peptide of the receptor-binding domain conjugated to keyhole limpet haemocyanin. A novel pilin protein with a scrambled receptor-binding domain was used to characterize receptor-binding domain-specific antibodies. The titres against the native pilin of the animals immunized with the synthetic peptide-conjugate were higher than the titres of animals immunized with the pilin protein. In addition, the affinities of anti-peptide sera for the intact pilin receptor-binding domain were significantly higher than affinities of anti-pilin protein sera. These results have significant implications for vaccine design and show that there are significant advantages in using a synthetic peptide-conjugate over a subunit pilin protein for an anti-pilus vaccine.