Epidermal growth factor receptor (EGFR) kinase domain mutations cause hyperresponsiveness to ligand and hypersensitivity to small-molecule tyrosine kinase inhibitors. However, little is known about how these mutations respond to antibodies against EGFR. We investigated the activity of panitumumab, a fully human anti-EGFR monoclonal antibody, in vitro in mutant EGFR-expressing non-small cell lung carcinoma (NSCLC) cells and in vivo with chemotherapy in xenograft models. Mutant EGFR-expressing NSCLC cells (NCI-H1975 [L858R+T790M] and NCI-H1650 [Delta746-750]) and CHO cells were treated with panitumumab before EGF stimulation to assess the inhibition of EGFR autophosphorylation. Established tumors were treated with panitumumab (25, 100, or 500 mug/mouse twice a week) alone or with docetaxel (10 or 20 mg/kg once a week) or cisplatin (7.5 mg/kg once a week). Antitumor activity and levels of proliferation markers were analyzed. Treatment of mutant EGFR-expressing CHO and NSCLC cells with panitumumab inhibited ligand-dependent autophosphorylation. In NCI-H1975 and NCI-H1650 xenografts, treatment with panitumumab alone or with cisplatin inhibited tumor growth compared with control (P < 0.0003). With panitumumab plus docetaxel, enhanced antitumor activity was seen in both xenografts versus panitumumab alone. Panitumumab treatment alone decreased Ki-67 and phospho- mitogen-activated protein kinase (pMAPK) staining in both xenografts compared with control. Docetaxel enhanced panitumumab activity in NCI-H1650 xenografts (decreased Ki-67 and pMAPK staining by >60%) when compared with either agent alone. Panitumumab inhibits ligand-induced EGFR phosphorylation, tumor growth, and markers of proliferation alone or with docetaxel in NSCLC cell lines that express clinically observed EGFR kinase domain mutations, including the small-molecule tyrosine kinase inhibitor-resistant T790M mutation.