The RAD51 protein and its paralog, XRCC3, play an important role in the repair of DNA double-strand breaks (DSBs) by homologous recombination. Since DSBs may contribute to the pathogenesis of breast cancer and variability in DNA repair genes may be linked with some cancers, we performed a case-control study (135 cases and 175 controls) to check the association between the genotypes of the Thr241Met polymorphism of the XRCC3 gene and the 135G>C polymorphism of the RAD51 gene and breast cancer occurrence and progression. Genotypes were determined in peripheral blood lymphocytes by RFLP-PCR. We did not find any association between either polymorphism singly and breast cancer occurrence. Both polymorphisms were not related to tumor size, estrogen and progesterone receptors status, cancer type and grade. However, the Thr241Met genotype of the XRCC3 polymorphism slightly increased the risk of local metastasis in breast cancer patients (OR 2.56, 95% CI 1.27-5.17). The combined Thr241Met/135G>C genotype decreased the risk of breast cancer occurrence (OR 0.22, 95% CI 0.08-0.59). Our results suggest that the variability of the DNA homologous recombination repair genes RAD51 and XRCC3 may play a role in breast cancer occurrence and progression, but this role may be underlined by a mutual interaction between these genes.