Epsin N-terminal homology (ENTH) domains occur in proteins of either the epsin or epsin-related (epsinR) form. They principally function in clathrin-mediated trafficking and membrane deformation. Both epsin and epsinR possess clathrin-binding motifs, but only epsin incorporates a ubiquitin-interaction motif (UIM). To better understand the origins of ENTH-domain proteins and their functions, we performed detailed comparative genomics and phylogenetics on the epsin family. The epsin ENTH-UIM configuration is an architecture restricted to yeast and animals. Further, we undertook functional analysis in Trypanosoma brucei (T. brucei), a divergent organism possessing a single ENTH-domain protein (TbEpsinR). TbEpsinR has a cellular location similar to both epsin and epsinR at plasma membrane clathrin budding sites and endosomal compartments, and associates with clathrin, as demonstrated by coimmunoprecipitation. Knockdown of TbEpsinR leads to a significant decrease in the intracellular pools of multiple surface antigens, without affecting bulk membrane internalization. Therefore, despite lacking the UIM, TbEpsinR maintains a similar role to metazoan epsin in endocytosis and participates as a clathrin-associated adaptor. We suggest that recruitment of a UIM to the ENTH-domain proteins was not essential for participation in endocytosis of ubiquitylated molecules, and is presumably a specific innovation restricted to higher eukaryotes.