Several hypotheses have been examined as potential causes of global amphibian declines, including emerging infectious diseases and environmental contaminants. Although these factors are typically studied separately, animals are generally exposed to both stressors simultaneously. We examined the effects of the herbicide atrazine and the insecticide chlorpyrifos on the susceptibility of tiger salamander larvae, Ambystoma tigrinum, to a viral pathogen, Ambystoma tigrinum virus (ATV). Environmentally relevant concentrations of atrazine (0, 20, 200 microg/L) and chlorpyrifos (0, 2, 20, 200 microg/L) were used along with ATV in a fully factorial experimental design whereby individually housed, 4-week-old larvae were exposed for 2 weeks. Atrazine alone was not lethal to larvae, and chlorpyrifos alone was lethal only at the highest concentration. When combined with ATV, chlorpyrifos increased susceptibility to viral infection and resulted in increased larval mortality. A significant interactive effect between atrazine and ATV was detected. Atrazine treatments slightly decreased survival in virus-exposed treatments, yet slightly increased survival in the virus-free treatments. These findings corroborate earlier research on the impacts of atrazine, in particular, on disease susceptibility, but exhibit greater effects (i.e., reduced survival) when younger larvae were examined. This study is the first of its kind to demonstrate decreases in amphibian survival with the combination of pesticide and a viral disease. Further examination of these multiple stressors can provide key insights into potential significance of environmental cofactors, such as pesticides, in disease dynamics.