The phenomenon of extraordinary transmission in the optical regime for circular hole arrays in optically thick metal films is studied as a function of hole size and depth. In the limit of small holes compared to the depth, the transmission properties follow a waveguide type behavior. By describing the transmission process as resulting from the interference between a resonant and a non-resonant contribution, a transition is clearly revealed through the specific spectral variations of the resonance at a given hole depth. This transition is associated to a change in the attenuation through the hole as its size increases, and corresponds to the optimal condition for surface plasmon excitation.