Formation and efflux of ATP-binding cassette transporter substrate 2,4-dinitrophenyl-S-glutathione from cultured human term placental villous tissue fragments

Mol Pharm. 2009 Nov-Dec;6(6):1689-702. doi: 10.1021/mp900019z.

Abstract

Upon exposure to 1-chloro-2,4-dinitrobenzene (CDNB), the human placental tissue forms its glutathione conjugate 2,4-dinitrophenyl-S-glutathione (DNP-SG). The purpose of this study was to investigate the involvement of human placental ATP-binding cassette (ABC) transporters in the efflux of DNP-SG. Placental tissue samples were obtained from pregnant patients undergoing C-section deliveries following normal pregnancies; villous tissue was cultured in suspension, and DNP-SG formation and efflux upon exposure to 100 microM CDNB were measured by HPLC. DNP-SG efflux decreased by 69.1 (+/-11.3)%, 51.1 (+/-5.4)%, 56.7 (+/-8.3)% and 53.6 (+/-10.8)% (p < 0.05) in the presence of 5 mM sodium orthovanadate (ATPase inhibitor), 100 microM MK571 (MRP-inhibitor), 1 mM dipyridamole (BCRP/P-gp/MRP1-inhibitor) and 100 microM verapamil (P-gp/MRP1 inhibitor) respectively, without any change in DNP-SG formation, total tissue glutathione, GSH/GSSG ratio, tissue integrity or tissue viability. These data clearly established the role of ABC transporters in the human placental efflux of DNP-SG. To investigate the contribution of various ABC transporters toward DNP-SG transport, ATP-dependent transport of 3H-DNP-SG was determined in Sf9 membrane vesicles overexpressing P-gp, BCRP and the MRP proteins. MRP1-mediated DNP-SG transport was inhibited in the presence of sodium orthovanadate, MK571, dipyridamole and verapamil in the presence of glutathione. Furthermore, MRP1-mediated transport [K(t) = 11.3 +/- 1.3 microM and v(max) = 86.7 +/- 1.9 pmol/mg/min] was a high-affinity process compared to MRP2-mediated transport [K(t) = 168 +/- 7 microM and v(max) = 1367 +/- 18 pmol/mg/min]. The inhibition pattern and the kinetics of DNP-SG efflux in the placental villous tissue were consistent with MRP1-mediated DNP-SG efflux, suggesting a functional role and an apical localization for an MRP1-like transporter in the human placental syncytiotrophoblast.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / antagonists & inhibitors
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / metabolism
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters / antagonists & inhibitors
  • ATP-Binding Cassette Transporters / metabolism*
  • Adolescent
  • Adult
  • Biological Transport / drug effects
  • Biological Transport / genetics
  • Blotting, Western
  • Dipyridamole / pharmacology
  • Ethacrynic Acid / pharmacology
  • Female
  • Glutathione / analogs & derivatives*
  • Glutathione / metabolism
  • Glutathione S-Transferase pi / antagonists & inhibitors
  • Humans
  • Kinetics
  • Middle Aged
  • Multidrug Resistance-Associated Protein 2
  • Multidrug Resistance-Associated Proteins / antagonists & inhibitors
  • Multidrug Resistance-Associated Proteins / metabolism
  • Neoplasm Proteins / antagonists & inhibitors
  • Neoplasm Proteins / metabolism
  • Placenta / drug effects
  • Placenta / metabolism*
  • Pregnancy
  • Propionates / pharmacology
  • Quinolines / pharmacology
  • Tissue Culture Techniques
  • Verapamil / pharmacology
  • Young Adult

Substances

  • ABCC2 protein, human
  • ABCG2 protein, human
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters
  • Multidrug Resistance-Associated Protein 2
  • Multidrug Resistance-Associated Proteins
  • Neoplasm Proteins
  • Propionates
  • Quinolines
  • S-(2,4-dinitrophenyl)glutathione
  • verlukast
  • Dipyridamole
  • Verapamil
  • GSTP1 protein, human
  • Glutathione S-Transferase pi
  • Glutathione
  • Ethacrynic Acid
  • multidrug resistance-associated protein 1