Budesonide/formoterol effects on metalloproteolytic balance in TGFbeta-activated human lung fibroblasts

Respir Med. 2009 Nov;103(11):1755-63. doi: 10.1016/j.rmed.2009.03.018. Epub 2009 Apr 17.

Abstract

In the airways of asthmatic patients, activated fibroblasts account for an excessive matrix production including proteoglycans (PGs). Transforming growth factor-beta (TGFbeta), metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play key roles in matrix turnover. It is unclear whether asthma therapy with combination of inhaled glucocorticoids and long-acting beta(2)-agonists affects metalloproteolytic equilibrium and by that counteracts airway fibrosis. The effects of the glucocorticoid, budesonide, and the long-acting beta(2)-agonist, formoterol, on the PG production and the activity of PGs' main regulators: MMP-3, MMP-9, MMP-2 and TIMP-1 were investigated in human lung fibroblasts (HFL-1) treated for 24h with TGFbeta1 (10 ng/ml) without/with budesonide (10(-9) to 10(-6)M) and/or formoterol (10(-11) to 10(-6)M). TGFbeta1 significantly increased production of PGs and TIMP-1, and the activity of MMP-3, MMP-9 and MMP-2. Concurrent budesonide/formoterol combination counteracted the enhanced: PG and TIMP-1 production, MMP-9 activity and MMP-9/TIMP-1 ratio, whereas MMP-2 and MMP-3 were not affected and so their ratios to TIMP-1 were significantly increased. Budesonide or formoterol alone achieved equal effects as budesonide/formoterol on MMP-9 and MMP-9/TIMP-1 ratio but had no effects on TIMP-1, MMP-2 or MMP-3. In the formoterol absence, higher budesonide concentrations were required to reduce the PG production, whereas formoterol alone had no effects. These results suggest that the budesonide/formoterol combination enhanced metalloproteolytic activity of human lung fibroblasts via a synergistic decrease of TIMP-1, and that this mechanism may be involved in the synergistic inhibition of the TGFbeta1-induced PG production. This implies that budesonide/formoterol combination therapy can counteract excessive matrix production and thus pathological airway fibrotic remodeling in asthma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Asthma / drug therapy
  • Asthma / metabolism*
  • Bronchodilator Agents / pharmacology*
  • Budesonide / administration & dosage
  • Budesonide / pharmacology*
  • Cells, Cultured
  • Ethanolamines / administration & dosage
  • Ethanolamines / pharmacology*
  • Fibroblasts / drug effects
  • Formoterol Fumarate
  • Humans
  • Lung / drug effects*
  • Lung / metabolism
  • Matrix Metalloproteinase 2 / metabolism
  • Matrix Metalloproteinase 3 / metabolism
  • Matrix Metalloproteinase 9 / metabolism
  • Matrix Metalloproteinases / metabolism*
  • Proteoglycans / biosynthesis
  • Respiratory System / drug effects
  • Respiratory System / metabolism
  • Tissue Inhibitor of Metalloproteinase-1 / metabolism
  • Transforming Growth Factor beta / pharmacology

Substances

  • Bronchodilator Agents
  • Ethanolamines
  • Proteoglycans
  • Tissue Inhibitor of Metalloproteinase-1
  • Transforming Growth Factor beta
  • Budesonide
  • Matrix Metalloproteinases
  • Matrix Metalloproteinase 3
  • Matrix Metalloproteinase 2
  • Matrix Metalloproteinase 9
  • Formoterol Fumarate