Background: Multinucleated cells are frequently seen in association with a malignant neoplasm. Some of these multinucleated cells are considered to be neoplastic. The mechanism of neoplastic multinucleation remains unknown, but is considered to be induced by either cell-cell fusion or acytokinetic cell division. Myxofibrosarcoma consists of spindled and pleomorphic tumor cells and bizarre multinucleated giant cells. Some of these multinucleated cells are considered to be neoplastic.
Methods: We studied the mitotic activity of the multinucleated cells by Ki-67 immunohistochemistry, and the dynamics and differentiation by live-cell video microscopy in the two myxofibrosarcoma cell lines to determine whether the mechanism of multinucleation is cell-cell fusion or acytokinetic cell division
Results: A Ki-67 immunohistochemical analysis revealed a high positive rate of multinucleated cells, as well as mononuclear cells, and mitotic ability was shown in the multinucleated cells. In live-cell video microscopy, most of the multinucleated cells were induced via the process of acytokinetic cell division.
Conclusion: The current study indicates that a vulnerability of the cytoskeleton components, such as the contractile ring, causes multinucleation to occur from the telophase to the cytokinesis of the cell cycle.